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METHODS OF SEARCH FOR SOLVING POLYNOMIAL EQUATIONS

By Peter Henrici#
Eidgendssische Technische Hochschule

2irich, Switzerland

Dedicated to D. H. Lehmer on his 65th birthday

Abstract
The problem of determining a zero of a given polynomial with guaranteed
error bounds, using an amount of work that can be 2stimated a priori, is

attacked here by means of a class of algorithms based on the idea of systematic

search, Lehmer's "machine method" for solving polynomial equations is a

special case. The use of the Schur-Cohn algorithm in Lehmer's method is

replaced by a more general proximity test which reacts positively if applied

at & point close to a zero of a polynomial. Various such tests are described,

bed bt ped et e ) ) ey G G e

and the work involved in thelr use is estimated. The optimality and non-
optimality of certain methods, both on a deterministic and on a probabilistic

basis, are established.
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1. Introduction

In 1961 D. H. Lehmer (6] proposed a "machine method" for solving poly-
nomial equations, His algorithm was guaranteed to approximate a zero of any
given complex polynomial with an arbitrarily small error. The amount of
work necessary to compute a zero to a given precision could be estimated a
priori.

In the present paper we shall describe a class of algorithms for poly-
nomial zerofinding which contains Lehmer's method as a special case. Our
algorithms vorrow from Lehmer's method the basic idea of enclosing zeros
in disks of decreasing radius, and of covering disks containing a zero by
smaller disks. However, instead of using a special procedure to determine
whether or not a given disk contains a zero of a polynomial, the algorithms
discussed here merely require a "proximity test" (§2) which reacts positively
if applied at a point close to a zero of the given polynomial. Very simple
such proximity tests exist, and as a consequence some of our algorithms are
arithmetically simpler than Lehmer's method (§3).

The convergence of the general search algorithm is established (§),
and the maximum amount of work necassary to determine a zero to a preassigned
accuracy is estimated (45).

Among the class of all proximity tests, we then identify a subclass for
which the convergence of the resulting algorithms is linear. Among these
tests, the classical Schur-Cohn test (which forms the basis for Lehmer's
method) is shown to enjoy a certain property of optimality (§). We finally
discuss the best covering strategy 1f coverings by disks of constant radius
are used. From a deterministic point of view, the best strategy consists

in covering a disk of radius r by eight disks of radius QT > where

)
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4 = (1L + 2 cos 21-r/7)'1 = 0,450k . From a probabilistic point of view,
if coverings by disks of variable radius are permitted, Lehmer's original
covering is slightly better, although not optimal.

Besides Lehmer's paper, the present study was inspired by the methods
of search used in the constructive proofs of the fundamental theorem of

algebra due to Brouwer [3, 4] and Rosenbloom [10].

2., Proximity tests

For positive integers N , let PN denote the class of all monic

polynomials of degree N with complex coefficlents,

N N-1l
p(Z) =2 + a’v_lz + 00 * 9.0 ’

whose zeros ;5 (5 eoe » Gy satisfy |¢1|§1 o = 2 R R
N . It is our objJective to study a class of algorithms for solving the
following problem: Given any pcPN and any ¢> 0, to construct a disk
D of radius ¢ which contains a zero of p . The algorithms to be
discussed are uniformly convergent on PN ,» 1n the following sense: The
amount of work necessary to construct D 1is bounded by a quantity which
depends on ¢ and N, but not on the individual polynomial p .

The basic tool of the algorithms to be described is a proximity test
T = T(r) , which can be applied to any polynomial p;PN at any point 2z
such that |z| <1, and which the polynomial either passes or fails. The
test must be such that it is passed at all points 2z sufficiently close to
a zerc, and failed at all points sufficiently far away. (There may be an
in-between region where the test may be passed or failed.) The parameter
r regulates the difficulty of the test. The smaller r is, the more
difficult it becomes to pass the test.

2
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Speaking formally, a test T(r) dis called a proximity test if there
exist two positive functions ¢ and ¢, defined on some interval

OKr <r, and having the following properties: If p is any polynomial

0

in PN s and if ¢ 1is any zeroof p , then for all r¢(0,ro]

(1) p passes T(r) at all points z such thet |z| <1 and
|2 - ¢l < §() ;
(11) p fails T(r) at all points z such that |[z]< 1 and

|z = ¢| > w(r) .

The above evidently implies that ¢(r) < ¥(r) ; we do not require that
$ = ¢y , We postulate that T(r) becomes arbicrarily difficult to pass for

r--0, i,e.,

(iii) 1lim '(r) =0,
r—0

We furthermore require
(iv) ¢ is continuous and strictly monotonically increasing.
The functions ¢ and ¢ are called, respectively, the inner and
outer convergence function of the test T(r) .
The following test, to be denoted by T1 , may serve ag a first example

of a proximity tuost:

p passes 'rl(r) at z " c=== |p(z)| <.

e
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To show that this test has the required properties for 0 < r < 1, let

)N( )
Rds L kal

If p fails the test at z , then

N
lp(z)l= 0 |z - Cil >r .
i=1

Hence for every 1,

X =
|z - cil>rdn1 2 - ¢l .
JH
Since |c"1 | <1, |z| <1, every factor of the product on the right is
at least 1/2 , and we find that
-N+1r, 1=1,000,N0

lz - ¢ l<2

N+1

Hence Tl(r) cannot be failed if |z - Cil <2™°r for some i, and (1)

is true for
§(r) = 2 ML,
If, on the other hand, p passes Tl(r) at 7z , then

N
n Iz-cilgr,
i=1 )

e S et e Al 0 st il Saalh SR . a8 B il .
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and it follows that

|2 - C1| - rl/N

for at least one index 1 . Thus the test cannct be passed if
lz - ¢ 1> Y gor an1 4 , and we find that (ii) is true for

§(r) = rl/N .

(By considering a polynomial with a single zero of multiplicity N, we
see that (ii) is not true for any smaller function ¢ .) It is clear
that ¢ has the prope:ties (iii) and (iv).

Two tests are called equivalent if they are defined on the same domain
of r and if they produce identical results for all polynomials p at
ell points z and for all values r .,

Example: The test TJ is equivalent to a test which is declared
passed if and only if [p(z) |2 < 2

Two proximity tests T and T* are called similar if there exists
an increasing function r* mapping [O,rO] onto an interval [O,rgl such
that the test T(r) is equivalent to T#(r) = T(r*(r)) . Similar tests
thus differ only in the choice of the parameter. It is clear that the
similarity of tests, too, is an equivalence relation.

Example: The test T, is similar to the test T*l*(r) which is passed
if and only if |p(2z)] < o, Convergence functions for T} are §(r) =

-N+1rN

2 and ¢(r) =r,

By (iv), every proximity test is similar to a test with outer con-

vergence function §(r) = r ,

- v v
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3. [The search algorithm
We require the notion of an e-covering, If ¢ 1s any positive number,

and if 8 1is any set in the complex plane, an g-covering of § is any
system of closed disks of radius <ce whose union contains S . The covering
is said to be centered in S 1if the midpoints of the covering disks belong
to S . The construction of a minimal e-covering of a given bounded set
(1.e., a covering containing the least number of disks) can raise intricate
questions of elementary geometry. Of course, one can always use coverings
whose centers form a square or hexagonal grid.

Let peP

N
tonic sequence of positive numbers converging to zero such that 9 = 1.,

, let T be aproximity test, and iet [qk} be a mono-

We shall describe an algorithm for constructing a sequence of points {zk}

such that each of the disks
D, = {z: |z- zkl < qk] ,

k=0, 1, 2, ..., contains at least one zero of p .

Let zq = O . Then Do certainly contains a zero, for it contains
all zeros. The algorithm now proceeds by induction. Suppose we have
found a point 2 such that Dk-l contains a zero. To construct z
we cover the set Dk-l n Do with an ek-covering centered in it and

k H

apply a test T(rk) at the ~enter of each covering disk. The parameters

& and r, are chosen such that the following two conditions are met:

k
(A) The test is passed at the center of each disk of the covering
which contains a zero.

(B) Any point at which the test is passed is at a distance <

from a zero.

R
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Condition (A) is satisfied if ¢ < Q(rk) . Condition (B) is satisfied

ir '(rk) < q . Thus both conditions are fulfilled if

rk = '-l(qk) )
(1)
e = ¥r) = ¥ (x))

where 0-1 denotes the inverse function of ¢ .

At least one of the covering disks contains a zero, since Dk-l contains
one, and since all disks are contained in DO . Thus by (A), the test
T(rk) is passed at least once. We let 2z, be the first center at which

the test is passed. There is no assurance that the disk of radius &

surrounding 2z, actually contains a zero, but by (B), the disk Dk does.,

k
The whole algorithm thus may be summarized as follows: Let 29 = 0.

Having constructed 2., » Sover the set Dk-l n Do by an & " overing
centered in it, and apply T(rk) at the center of each covering disk, where

e, &nd 1 are given by (1). Let z, be the first center which passes
the test.

Provided that identical systems of converings are used, the above
algorithm remains unchanged if the test T 1is replaced by a "similar"

test T* ,

L. Convergence

By construction, the centers 2, of successive disks Dk satisfy

Iz zk| < 9 where q - O . This in itself does not imply the

k+l
convergence of the sequence [zk] « Nevertheless, there holds

THEOREM 1. The sequence {zk] converges, and its limit is a zerc of p .




l Proof. Let

8= min |¢ - (|
o Gre

Il The disk Dty likewise contains a zero, say CJ . From

- 2 = Gl Sy P2y = Gl Sy

1

it follows by the monotonicity of the sequence {qn] that

5. Amount of work

We measure the amount of work required to approximate a zero with an

to construct the first disk D, such that its redius Q. is less than

k
For reasons of simplicity we assume until further notice that the centers

of the covering disks always form a square grid.

ol tmd bod bod b i

A ley - ¢yl S ay +ap,y c29, <8
.E and hence that ¢ = Cj . Thus for all n=m, lzn * Cil < q, > proving
% that
] l
! ! lim ¢
z = .
| § T n-—o i
¢ o

€

l be the minimum di:ziance between distinct zeros of p . Let m be an integer

su¢h that 2qm <4. Let n>m . The disk Dk contains & zero, say ci d

error < ¢ by estimating the number of applications of the test T :required

e
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The area of Dm-l is ™, In a square tn covering, the centers

of the covering disks must be not more than /E-ﬁn apart. Neglecting

boundary effects, approximately

2
-1
2
cm

M =}

disks of radius e, are thus required to cover Dm-l . (Working with a
hexagonal grid, the constant g could be replaced by %3? .) Within
the same degree of approximation, this also is the maximum number of appli-
cations of the test to proceed from 201 to z,

For the given sequence f{q,} and for ¢> 0, let k(e) denote the
smallest k such that G4y § ¢ « By the above, the total number of appli-
cations of the test necessary to approximate a zero with an error <e does

not exceed a quantity of the order of

k(e) o
(2) w(T,{q, },e) = 2 z: h;_l :
m= em

We axiomatically define the above function w as the work function c¢f tre

search algorithm based on the proximity test T and the sequence {qk} .
The work function does not change if the test T 1s replaced by a similar
test T* .

From the faclL that w does not depend on p it already follows theat
the search algorithms described earlier are uniformly convergent in the

sense described earlier.
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Example., For the test T1 , thoosing a geometric mode of subdivision

(qk = qk , 0<g<1l, k=0, 1, 2, ...) we have in view of {¢(r) =

2, W(r) = LN
-1 -N+1 mN
e = $¥ () =27 g,
hence
K m on-2 K& onis omy -(2N-2)k(¢)
w(Tlsiq ],E) = 5 2 z q ~CN q
m=1
(e »0) , where
g 222
Cy =25z (N22) .
q -q

For the determination of & zero of a polynomial of degree 10 with an error
< 107 , working with q = S (which requires k = 20 ) the function w

2
yields an upper bound of approximately 2397n = lO120

applications of the
test. Since on the average we can't expect to do much better than use one
half of the maximum number of tests, a search algorithm based on Tl

certainly is not practical.

6. Proximity tests with linear convergence functions

Suppose the convergence functions of & proximity test T are linear,

() §r) =ar, y(r) =br

(0 < a<b). Then by (1),

10
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and the work function (2) becomes f
2
2 x(e)
b In-1
(l") W(T’[q }’E) =I1= r == .
k 2 .2 2
a m=1 qm
k
In particular, if q = qQ ,
k o>
(5) w(T,{a" },e) = =55 k(e) .
2a q
aud the work necessary to compute a zero to a given accuracy is proportional
to the number of decimals required. This convergence behavior is known
as linear convergence.
We now shall give some examples of proximity tests with linear con-
vergence functions. For arbitrary z and h , let
1
p(z +h) =b. +bh+b.h> + ... +b.hl '
0 l 2 e o Nh .
L
(bN = 1) . It will be convenient to suppress the argument 2z in the Taylor
coefficients bi .
6.1. The test T, . Let
v | 1k ;
B = B(z) = min 0 .
l<=k<N_ k ¥
The polynomial p 1is said to pass the test T2(r) at 2z if and only if
i
B(z) < r . To determine the convergence functions of this test, let
11
S T e At o e ;-——-—-‘——-—_—-—J
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(6) p= min |z - Ckl :
gk

The relations of Vieta imply, as is well known,

1/k

o) %0
k bk

1/k
Since (g) < N, this implies » < NB(z) . Hence if p > Nr , then

B(z) >r, and p fails Té(r) et 2z . It follows that
¥(r) = Nr

is outer convergence function for Té .

the test at z . Then B > r and hence

On the other hand, let p fail

-k,kal’e,""N.

If p(z+h) =0 and [h| = o, the Taylor expansion shows that

and hence that f-> + It follows that the test cannot be failed if

p< % r, i.e.,

§(r) =3 r

is inner convergence function for T2 .
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Thus T, has convergence functions of the form (3); we note that

% = 2N . In the numerical example considered earlier (N = 10 ,

e = 10'6 y Q= 2'k) , (4) now furnishes an upper bound of some 50,000

applications of the test.

6.2. The test T3 . The polynomial is said to pass T3(r) at 2z

if and only if
2 N
|b0| < |b1|r + [b2|r + ool + |bN|r .

Let p be defined by (6). Then for some h such that |h| = o we have

p(z + h) = 0 , hence
2 N
ool < Ioylo + Ioyls® + oo+ foyls
and p passes T5(p) . Thus #(r) = r 1s inner convergence function for

this test. On the other hand, a theorem of ¢. D. Birkhoff [2] implies

that the test cannot be passed if p > (El/N - l)-lr . Thus
He) = o
27 7-1
is outer convergence function. For this pair of convergence functions,

1 N
JUN_ ~ Tog 2 (W) .

® o

For a given sequence {qk} , and for linear convergence functions (3),

the value of the work function for a given ¢ 1s proportional to b2/a2 .

13




boed  bored  beed v e pemd e emd o —4 4

For both tests T, and T, this ratio is o(f*) a8 Nowo. This
situation is typical for any test that depends only on the absolute values
lbil , for it is known [9, 1] that the masimum of the ratio oI the largest
and smallest absolute value which the smallest 2ero of a polvromial of degree
N can have if the absolute values of the coelficients are fixed is precisely

(21/N - 1)'1 . It follows that smaller values of b/a can be achieved only

with tests that do not merely use the sv3olute values of the Taylor coeffi-

cients.

6.3. The test T, This test makes use of the sums

o -k
(7) sk=i§l(ci-z) s. K ®L g 24 e

It is easily shown by means of a gerierating function argument that these
quantities can be computed from the Taylor coefficients at z by means

of the follwwing recurrence relation:

s + oo +8_.b),

-1
= - by (kbk+s k-1°1

K 1Pk-1 ¥ 82Pk 2

let p be defined by (6). Then lsklng'k , k=1, 2, ..., and

it follows that

1/k
(8) P /

uA

1k

e S g LS

A,

|



Let

1/k

s = min
8

Loy

We say that p passes the test Th(r) at z if and only if S<r . It

follows from (8) that

¥(r) =r

is outer convergence function for this test. Moreover, a rather deep result
of Buckholtz [5] states that S < (2 + 2/2)p , where the numerical constant

is best possible, It follows that

§r) = (2 +2/2)7r

is inner convergence function. For this pair of convergence functions, the

ratio bfa =2 +2/F £ 4,8284 is independent of N .

6.4. Sharp tests. For a given sequence [qk} , and for linear con-
vergence functicns ¢ and y , the value of the work function (4) for
given ¢ 1is a minimum for a test such that b = a . Without loss of
generality it may be assumed that b =a =1. A test with convergence
functions ¢(r) = y(r) = r will be called sharp. A sharp test reacts
positively if and only if the closed disk of radius r about the testing

point 2z contains a zero, Thus all sharp tests belong to the same class

of equivalent tests.,

15
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- There exist several realizations of sharp tests. They arec based either

- on a conformal mapping of the disk onto the left half-plane, followed by the

Routh-Hurwitz algorithm, or (more directly and efficiently) on the well-
known Schur-Cohn algorithm ([8], p. 195) for counting the number of zeros
in a given disk. Lehmer's method [6, 7], the first search algorithm of the
type considered here, was based on the Schur-Cohn algorithm,

k¢ =107), (5) now

.. In our numerical example (N = 10 , q =2
*t yields a maximum of a mere 129 tests in an algorithm based on & rl.arp test.
Due to neglect of boundary effects, the true maximum is somewhat higher;
see below,
j The mere fact that the work function is smallest for the Schur-Cohn

e test does not in itself imply that this test defines the computationally

= most efficient algorithm, since the work function does not take into account

the work required to carry out the test. In the absence of rigorous results

concerning the minimum number of arithmetic operations required to administer

the various tests, precise results are difficult, Suffice it to say that

all tests described in this section require, among other things, all Taylor

O

coefficients at 2z . 1If performed by the Horner algorithm, their computation

requires %Ng + O(N) multiplications. The Schur-Cohn algorithm, if programmed

e e
"

in the superior fashion recommended by Stewart [11l), requires another

oy

»)
%N‘ + O(N) multiplications and divisions, roughly the same as the computation

of the sums Sy required for Th + Thus the Schur-Cohn test requires only

about twice as much work as T2 or T5 5

and about the same as Th .

3 oo Bt ki et o s A

7. Optimum choice of {qk]

i

supposc the search algorithm is based on a test with linear convergence

functions (3). If ¢ 1is given, for what choice of the sequence {qk} is :

the work function w(T,{qk],e) & minimum?
16
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We first answer this question when k(e) is prescribed. Let ¢ >0 ,
Iet k be a given positive integer, and let [qm] be any decreasing
sequence such that Q" 1, Qe = € ¢ Then, by the inequality of the

arithmetic and geometric mean,

' X gy o
W(T, [(.'m}’ G) = C 5 (Cc = 2)
m=l qm 2a
2 |1/k
k

zoc| n

- mel 9

- Cke-e/k

w(r, (%,

and we have proved:
THEOREM 2. Let €> 0 apd k> O be given. On the space of all
monotonic sequences {qm] such that q = 1l and q =€, the work function

(4) assumes its smallest value for the geometric sequence, q, = cm/k ’
m = o s 1 }) 2 ] L L]

On the basis of this result, we now restrict our attention to geometric

sequences, q = qm (0< @< 1), and ask for the optimal value of q to

" achieve a given accuracy ¢ . As a function of q and ¢, k(e) is now

the smallest integer such that qk <eor

woe- [m1]

17
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where [x) denotes the largest integer <x. Neglecting a fractional part,

we thus have approximately

k 0 log ¢
w(T, (q ]’5) = C 2
q logq

(C defined as above). By differentiation we easily find that the minimum
of the above expression is attained for q = e'l/2 = 0.6065%3 , and that the
value of the minimm is 2 e C log % .

Unfortunately, the above result does not indicate accurately the
maximum number of tests to be applied, because the method of counting the
covering disks underlying (2) becomes increasingly inaccurate (due to the
neglect of boundary effects) if the ratio of the radii of the covering disks
and of the disk to covered approaches 1 . To determine the exact maximum,
let, for 0<x<1, f(x) denote the minimum number of disks of radius
x that are required to cover the unit disk. The function f 1is non-
increasing, piecewise constant, and continuous from the right; no simple
analytical expression for it exists. To proceed from Z, to zm-o-l in a
search algorithm based on a test with linear convergence functions and on a
geometric sequence {qm} requires covering a disk of radius qm by disks
of radius %qml . Hence, if an optimal covering is used, at most f(% Q)

applications of the test are necessary. The actual maximum number of

tests to attain an error < ¢ thus equals

W(a,b,q,¢) = - f(%‘l) [’ Eﬂ-ﬁ]

log q

18

¥
B
a




i

| g— |

TSR g

We shall determine the minimum of W as a function of gq for the Schur-
Cohn test (a=b=l) .

THEOREM 3. For sufficiently small fixed values of ¢ , the function

F(q,e) = W(1,1,q,¢) assumes its minimum at q = q, = (1 +2 cos ?—”)-l .

The value of the minimum is

Flagse) = -a[- i—ﬁé-c%o]* ¥ [ g_gagsgj .

Proof. We first determine the minimum of the function

G(a) = £(a) %g—g

Let the points of discontinuity of f be, in decreasing order, 1 = Xy >
Xy > X, > ... , and let the constant value of f 1in the interval
Xp S % <x . be denoted by f_ (m=1,2, ...) . Then G(q) 1is increasing

in each of the intervals X <gq< X1 0 and has a downward jump at the

points x_ (m=1,2, ...) . It thus is smallest where

6(x ) = £ log e

m log X,
is smallest. It can be shown that

7 \-1

xm=(2cosm , f,=m+2 for m=1, 2, 3;
- 2n -1 -
xm—(l+2cosm+2 , f =m+3 for m=h , 5, 6.,
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From these values and from the trivial estimate f(x) 2x-2 it follows

by computation that the minimum is assumed only at q, = xs =

(1 + 2 cos i—")'l £ 0,44504 , and that it has the value

G(qy) = 8 %gg-fz £ 9.882 log ¢ .

The function F has the form F(q) = £f(q)h(q) , where

1
h(g) = - [- 1—2-2-&]

The function h is piecewise constant, nondecreasing, and continuous

from the left. We denote its points of discontinuity by O < ho < h1 <
hy, < ... . Evidently, F(a) > G(q) , with equality holding if and only
it q = hn for some n . Let n* be the smallest index n such that

hn 29, . For sufficiently small values of ¢ , the points hn are

arbitrarily dense, hence hn* < X, and furthermore
F(hn*) < G(xm) , mES .

Tt follows that F(hn*) is the smallest value of F . If h , =q,,
the Theorem is established., If hn* > 9 the Theorem follows from the
tact that F(q) is constant for 9y S a< hn* .

The optimal covering of the unit disk by 8 disks of radius % consists
of a disk centered at the origin, surrounded by 7 disks centered at the

points
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8. Non-uniform converings

So far in this study, it was assumed that the covering of cach disk
Dk consists of disks of constant radius. It is a trivial matter to
modify the definition of the basic search algorithm to permit coverings
of variable radius and to extend the convergence theorem to this case.
Also the upper bounds for the amount of work are casily adapted to extend
to such non-uniform coverings.

However, the optimality considerations or section 7 strongly derend
on the constancy of the radii of the covering disks, and it is far from
obvious how they should be modified for non-uniform coverings. Tt appears
certain, however, that the methods using uniform coverings are not optimal
in the class of methods using arbitrary coverings.

The efficiency of an algorithm can also be judged from a probabilistic
point of view, for instance by computing the average number Z of appli-
cations of the test required to improve the accuracy of a zero by one
decimal digit. Here again the methods using uniform coverings are not

optimal., For the optimal method using uniform coverings determined in

Theorem 3, it can be shown that

Z = 11,168 .

21
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Lehmex's method covers the unit disk by a disk of radius % centered at
O, andby 8 disks of radius %2- centered on a circle of radius % .
For this covering, if the sequence of surrounding disks is chosen optimally

as suggested in [6],

z = 11,143 ,
It can be shown that Lehmer's coverings is again not optimal, if only by
the trivial reason that it has some built-in slack to counteract rounding.

The detailed investigation of optimal non-uniform coverings must, however,

wait for another paper.

22




[1]

(2]

(3]

(4]

(5]

(7]

(8]

[9]

REFERENCES

Batschelet, E.: Untersuchugen Uber die absoluten letrape der Wurzeln
algebraischer, insbesondere kubischer ileichungen. Verlandlungen
der Naturforschenden Gesellschaft in Fasel 55, pp. 158-179 (19uk),

Birkhoff, G. D.: An elementary double inequality tor the roots of
an algebraic equation having greatest absclute value. [ull. Amer,
Math. Soc. 21, pp. 494-495 (1914).

Brouwer, L. E. J., and F. de Loor: Intuitionistischer Keweis des
Fundamentalsatzes der Algebra. Amsterdam Konigl., Akad. van
Wetenschavpen, Proc. 27, pp. 186-188 (1924).

Brouwer, L. E. J.: Intuitionistische Ergénzung des Fundamentalsatzes
der Algebra. Amsterdam Konigl. Akad. van Wetenschappen, Proc. 27,

pp. 631-634 (1924).

Puckholtz, J. D.: Sums of powers of complex numbers. J. Math. Anal,
Appl. 17, pp. 269-279 (1967).

Lehmer, D. H.: A machine method for solving polynomial equations, i

J. Assoc. Comp. Mach. 8, pp. 151-162 (1961).

Lehmer, D. H.: GSearch procedures for polynomial equation solving,
Constructive aspects of the fundamental theorem of algebra (R. Dejon
and P. Henrici, ed.), pp. 195-208. Wiley, London, 1969. .

Marden, M.: Geometry of polynomials. Math. Surveys No. 5, Second
edition., Amer., Math. Soc., Providence, 196F.

Ostrowski, A.: Recherches sur la mdthode de ~raeffe et les zéros
des polynOmes et lLes séries de Laurent. Acta Math. 72, pp. 99-257
(1940).

Rosenbloom, P. C.: An elementary constructive proof of the fundamental
theorem of algebra. Amer. Math., Monthly 52, pp. 562-570 (1945).

Stewart, G. W, III: Some Topics in Numerical Analysis. Oak Ridge
National Laboratory Report CRNL-4303, Oak Ridge, Tennessee, September,
1968.




Unclassified
Secunty Classification

1. ORIGINATING ACTIVITY (Corporate author)
Computer Science Department
Stanford University

Stanford, California 94305

DOCUMENT CONTROL DATA - R4 D

(Security classilication of title, body of abstract and indexing annotation mus! be_amcnb when the overall re

t is classified
. REPORT SECURITY CLASSIFICATION

Unclassified

3 REPORY TITLE

METHODS OF SEARCH FOR SOLVING POLYNOMIAL EQUATIUNS

20. GROUP
o=

4. DESCRIPTIVE NOTES (Type o! report and inclusive detes)

Manuscript for Publication (Technical Report)

S. AUTHORI(S) (First name, middle initial, last name)

Peter Henrici

P ———
6 REPORY DATE

78. TOTAL NO. OF PAGES 70, NO. OF REFS

25 11l

8. CONTRACY OR GRANT NO

NOO014 =67 -A-0112-0029

b. PROJECT NO.

NR Ob4-211

d

90. ORIGINATOR'S KFPORT NUMBER(S)

9. OTHER REPORT NOIS) (Any other numbere thet! may be assigned

this report)
nene I

10. DISTRIBUYTION STATEMENT

Releasable without limitations on dissemination.

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

Office of Naval Recsearch

13 ABSTRACT

DD ".1473 (Prce D)

S/N 0101.807.6801

a probabilistic basis, are established.

~The problem of determining a zero of a given polynomial with guaranteed erro:r
bounds, using an amount of work that can be estimated a priori, is attacked here "y
means of a class of algorithms based on the idea of systematic search, Iehmer's
"machine method" for solving polynomial equations is a special case. The use of the
Schur-Cohn algorithm in Lehmer's method is replaced by a more general proximity tast
which reacts positively if appliied at a point close to a zero of a polynomial.
Various such tests are described, and the work involved in their use is estimated.
The optimality and non-optimality of certain methods, both on a deterministic and on

Unclassified -
Security Classification




A (Lo T T e —— - o

b Unclassified
: curlty Classillcation

KEY WORDS
AOLE wy ROLE wy gLt [AJ

| polynomials
~@ros
proximity test
covering ) {
search algorithm
vork function
optimal search
cptimal covering
Schur-Cohn algorithm -
convergence function =y

linear convergence

—t —t =

—t o

it |

4

-

— |
DD ."o..1473 (eacx) Unclassified ‘

IPAGE 2) Security Classification




